Grade Level/Course:

Algebra I

Lesson/Unit Plan Name:

Fractional Exponents and Property of Exponents

Rationale/Lesson Abstract:

To use the definition of fractional exponents to simplify expressions using property of exponents.

Timeframe:

50 Minutes

Common Core Standard(s):

AlgI.N-RN.1 Explain how the definition of the meaning of rational exponents follows from the extending of the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

Activity/Lesson:

Start by taking a look and integer exponents (see the provided handout.) Discuss and remind students of the rules for zero exponents, a negative exponent and properties of exponents.

Activity/Lesson continued:

Now let's look at a fractional exponent. Where would you put $4^{\frac{1}{2}}$? Between which 2 powers? Where would you put $4^{\frac{3}{2}}$? Between which 2 powers?

$$4^{3} = 4^{4-1} = \frac{4^{4}}{4} = \frac{4 \cdot 4 \cdot 4 \cdot 4}{4} = 4 \cdot 4 = 64$$

$$4^{2} = \frac{4 \cdot 4 \cdot 4}{4} = 4 \cdot 4 = 16$$

$$4^{\frac{3}{2}} = (4)^{\frac{1}{2} \cdot 3} = (2^{2})^{\frac{1}{2} \cdot 3} = (2^{2^{\frac{1}{2}}})^{3} = (2^{1})^{3} = 2^{3} = 2 \cdot 2 \cdot 2 = 8$$

$$4^{1} = \frac{4 \cdot 4}{4} = 4$$

$$4^{\frac{1}{2}} = (2^{2})^{\frac{1}{2}} = 2^{\frac{2}{2}} = 2$$

$$4^{0} = \frac{4}{4} = 1$$

$$4^{-1} = \frac{4}{4 \cdot 4} = \frac{1}{4}$$

$$4^{-2} = \frac{4}{4 \cdot 4 \cdot 4} = \frac{1}{4 \cdot 4} = \frac{1}{16}$$

Let's take a look at couple of examples.

1.		2.			3.		
	√ <u>81</u>		$16^{\frac{1}{2}}$	$16^{\frac{1}{2}}$		5	$9^{\frac{5}{2}}$
$\sqrt{81}$	$=(81)^{\frac{1}{2}}$		$=\sqrt{16}$ or	$= \left(4^2\right)^{\frac{1}{2}}$		9^{2}	$=9^{\frac{1}{2} \cdot 5}$
$=\sqrt{9^2}$ or	$= (9^2)^{\frac{1}{2}}$		$=\sqrt{4^2}$	= 4		$=9^{2}$	$=\left(9^{\frac{1}{2}}\right)^{5}$
= 9	$=9^{2 \cdot \frac{1}{2}}$		= 4			$= \left(9^{\overline{2}}\right)$ or	$\begin{pmatrix} 1 \end{pmatrix}^{5}$
	= 9					$=\left(\sqrt{9}\right)^5$	$=\left(3^{2 \cdot \frac{1}{2}}\right)$
						$=3^{5}$	$=3^{5}$
						- 275	= 243

You try: $100^{\frac{3}{2}}$

Activity/Lesson continued:

3		$100^{\frac{3}{2}}$
$100^{\overline{2}}$		100
$=(100)^{\frac{1}{2}\cdot 3}$		$=(100)^{-3}$
$=\left(100^{\frac{1}{2}}\right)^{3}$	or	$=\left(100^{\frac{1}{2}}\right)^{3}$
$= \left(\sqrt{100}\right)^3$		$= \left(10^{2 \cdot \frac{1}{2}}\right)^3$
$= 10^{\circ}$		$=10^{3}$
- 1,000		= 1,000

You can do this for any fractional exponent or any radical with an indicated index. $\sqrt[n]{a} = a^{\frac{1}{n}}$, where *n* is the index.

Let's take a look at a couple of examples.

4.	5.	6.	7.
$a^{\frac{3}{3}a} = a^{\frac{1}{3}}$	$5. 5\sqrt{x} = x^{\frac{1}{5}}$	$3\sqrt{27} = 27^{\frac{1}{3}} \text{ or } = 3\sqrt{3^{3}}$ $= (3^{3})^{\frac{1}{3}} = 3$ $= 3$	7. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
			= 256

You try: $125^{\frac{2}{3}}$

$$125^{\frac{2}{3}} = 125^{\frac{1}{3} \cdot 2} = 125^{\frac{1}{3} \cdot 2} = 125^{\frac{1}{3} \cdot 2} = 125^{\frac{1}{3} \cdot 2} = 5^{\frac{1}{3} \cdot 2} = 25$$

Evaluate the expression using two different methods.

Name:_____

Integer and Fractional Exponent Handout

$$4^{3} =$$

$$4^2 =$$

$$4^1 =$$

$$4^{0} =$$

$$4^{-1} =$$

$$4^{-2} =$$

Warm Up

Common Core	Review	Other	
1. Which of the following are equivalent to 4? Select all that apply. A. $\frac{4 \cdot 4 \cdot 4}{4}$ B. 5-1 C. $16 \cdot \frac{1}{8}$ D. $\sqrt{25}$	The Quotient of Powers Property states: To divide powers having the same base, subtract exponents. $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$ 2. Use the quotient of powers property to simplify the following. $\frac{4^4}{4^1}$	3. Use the converse of the quotient of powers property to write the given expression as a quotient of powers. $a^{m-n} = \frac{a^m}{a^n}, a \neq 0$ 4^{3-1}	
E. $(2^4)^{\frac{1}{2}}$ F. * Change all the expressions not selected to be equivalent to 4.	* Write what you do when you use the Quotient of powers property.	* Explain what it means to you to do the converse of the quotient of powers property.	